Subgroup of $S_4$ generated by $\{(123), (12)(34)\}$

by wittbluenote   Last Updated April 15, 2019 11:20 AM

I refer to the following problem.

Determine the subgroup of $S_4$ generated by $\{(123), (12)(34)\}$.

In his solution to the problem the author makes the following claim:

As $(123) \in A_4$ and $ (12)(34) \in A_4$, then certainly $ \langle S \rangle \leq A_4$.

It is this claim that is of concern to me (not the above problem). In particular, I fail to see how the implication

$(123) \in A_4$ and $ (12)(34) \in A_4 \implies \ \langle S \rangle \ \leq A_4$

is immediate or self evident.

What am I missing? Any help would be greatly appreciated!

Answers 1

Well, $\langle S \rangle$ is defined as the smallest subgroup (of a given group $G$) which contains $S \subseteq G$. Now there is no doubt that $A_{4}$ is a subgroup of $G = S_{4}$, and that $A_{4}$ contains $S$.

Andreas Caranti
Andreas Caranti
April 15, 2019 10:50 AM

Related Questions

The Isomorphism for Smith Normal Form

Updated July 18, 2019 23:20 PM

Cyclicity and number of maximal subgroups

Updated June 27, 2017 14:20 PM

Small subgroups of $\mathrm{GL}(n)$

Updated October 14, 2017 19:20 PM

Matrix group,inverse elements.

Updated February 19, 2017 21:20 PM