how can i place then values = F(logn)+F(logn-1) in golden ratio Fibonacci series?

by S.Ohanzee   Last Updated March 14, 2019 20:20 PM

How can I substitute the values in this Formula: $$F_n = \frac{\phi^n - (-\phi)^{-n}}{\sqrt{5}}$$

$$F_{log (n)} + F_{log(n-1)} = \frac{ \phi^{logn}-(-\phi)^{-log(n)}}{\sqrt5}+\frac{ \phi^{log(n-1)}-(-\phi)^{-log(n-1)}}{\sqrt5}$$ i tried like this ignoring the constant $$= \frac{1}{\sqrt{5}}$$ $$ F_{log (n)} + F_{log(n-1)} = { \phi^{logn}-(-\phi)^{-log(n)}}+{ \phi^{log(n-1)}-(-\phi)^{-log(n-1)}}$$ now i dont know how to proceed further



Related Questions


recurrence solution of placing tiles

Updated March 06, 2016 01:08 AM

Combinatorics | Recurrence relations | Problem

Updated May 09, 2017 17:20 PM

Induction for f$(n+2)=f(n+1)+6f(n)$ and its property

Updated August 20, 2017 19:20 PM

Solving recurrence relations with two variables

Updated April 21, 2015 05:08 AM

Variation of Tower of Hanoi

Updated April 09, 2015 20:08 PM