by isentr0pic
Last Updated May 28, 2018 10:20 AM

I'm currently working through problems given in *Mathematical Methods for Physicists* by Arken et al. I'm having a bit of trouble resolving a problem that comes up in Chapter 1. It is as follows:

If $\lim_{n\rightarrow\infty} \frac{b_n}{a_n} = K$, a constant with $0 < K < \infty$, show that $\sum_{n}b_n$ converges or diverges with $\sum a_n$.

*Provided Hint:* If $\sum a_n$ converges, rescale $b_n$ to $b_n' = \frac{b_n}{2K}$. If $\sum a_n$ diverges, rescale to $b_n'' = \frac{2b_n}{K}$.

Plugging everything in, I'm left with the following expression: $$ \lim_{n\rightarrow\infty} \frac{b_n}{a_n} = K \longrightarrow \lim_{n\rightarrow\infty} \frac{b_n'}{a_n} = \frac{1}{2} \\ $$

From here, I would usually proceed to split the limit and rearrange like so: $$ \frac{\lim_{n\rightarrow\infty}b_n'}{\lim_{n\rightarrow\infty}a_n} = \frac{1}{2} \\ \lim_{n\rightarrow\infty}b_n' = \frac{1}{2} \lim_{n\rightarrow\infty} a_n $$

In this case, I realise I can't do that because of the fact that under the assumption that $\sum a_n $ converges, $\lim_{n\rightarrow\infty} a_n$ must be equal to zero by the limit test.

Where have I messed up on my reasoning?

Thanks!

- ServerfaultXchanger
- SuperuserXchanger
- UbuntuXchanger
- WebappsXchanger
- WebmastersXchanger
- ProgrammersXchanger
- DbaXchanger
- DrupalXchanger
- WordpressXchanger
- MagentoXchanger
- JoomlaXchanger
- AndroidXchanger
- AppleXchanger
- GameXchanger
- GamingXchanger
- BlenderXchanger
- UxXchanger
- CookingXchanger
- PhotoXchanger
- StatsXchanger
- MathXchanger
- DiyXchanger
- GisXchanger
- TexXchanger
- MetaXchanger
- ElectronicsXchanger
- StackoverflowXchanger
- BitcoinXchanger
- EthereumXcanger