by John Watson
Last Updated January 14, 2018 17:20 PM

Suppose $P$ is finite partially ordered set (poset) with $\preceq $. Suppose it's width is $n$ i.e the minimal number od antichains which covers $P$. Say $$\mathcal{A} = \{A_1,A_2,...A_n\}\;\;\;\;\;\; {\rm and}\;\;\;\;\;\;\mathcal{A}' = \{A'_1,A'_2,...A'_n\}$$ are two family of antichains which covers $P$. Suppose that $$|A_1|\leq |A_2|\leq ...\leq |A_n|$$ and $$|A'_1|\leq |A'_2|\leq ...\leq |A'_n|$$ Can we say that $|A_i|=|A'_i|$ for each $i\leq n$?

- ServerfaultXchanger
- SuperuserXchanger
- UbuntuXchanger
- WebappsXchanger
- WebmastersXchanger
- ProgrammersXchanger
- DbaXchanger
- DrupalXchanger
- WordpressXchanger
- MagentoXchanger
- JoomlaXchanger
- AndroidXchanger
- AppleXchanger
- GameXchanger
- GamingXchanger
- BlenderXchanger
- UxXchanger
- CookingXchanger
- PhotoXchanger
- StatsXchanger
- MathXchanger
- DiyXchanger
- GisXchanger
- TexXchanger
- MetaXchanger
- ElectronicsXchanger
- StackoverflowXchanger
- BitcoinXchanger
- EthereumXcanger