by Wolker
Last Updated December 07, 2017 10:20 AM

What can be said about an equivalent of $$\sum_{n \leqslant x} \frac{n}{\log n}$$

I would like to compare it to $x^2$ which is approximately $\sum_{n \leqslant x} n$. Is it negligible in front of it? I tried partial summation and dyadic cutting, but nothing seems to work...

According to prime number theorem $$\lim_{xto\infty}\dfrac{\pi(x)\log x}{x}=1$$ so $$\dfrac{x}{\log x}\sim\pi(x)$$ where $\pi(x)$ is number of prime numbers less than $x$.

- ServerfaultXchanger
- SuperuserXchanger
- UbuntuXchanger
- WebappsXchanger
- WebmastersXchanger
- ProgrammersXchanger
- DbaXchanger
- DrupalXchanger
- WordpressXchanger
- MagentoXchanger
- JoomlaXchanger
- AndroidXchanger
- AppleXchanger
- GameXchanger
- GamingXchanger
- BlenderXchanger
- UxXchanger
- CookingXchanger
- PhotoXchanger
- StatsXchanger
- MathXchanger
- DiyXchanger
- GisXchanger
- TexXchanger
- MetaXchanger
- ElectronicsXchanger
- StackoverflowXchanger
- BitcoinXchanger
- EthereumXcanger