Expectation of Order Statistics Independence

by GAGA   Last Updated August 14, 2019 20:19 PM

Let $X_1,....,X_n $ be iid Uniform $(\theta,2\theta)$ $\theta >0$

$E(X_{(1)}X_{(n)})=E(X_{(1)}) E(X_{(n)})$

Is this true since $X_1,....,X_n $ are independent?



Related Questions


Computing expectation for random matching

Updated January 27, 2019 05:19 AM

Find probability from uniform distribution

Updated April 22, 2017 05:19 AM

Sufficient Statistic of Uniform $(-\theta,0)$

Updated July 12, 2019 06:19 AM

$E[\bar{X^3}]$ of N(μ,1)

Updated March 14, 2019 02:19 AM

Variance of Beta (Fastest way )

Updated July 26, 2019 18:19 PM